A New Simulation Technique for Study of Collisionless Shocks: Self-Adaptive Simulations
نویسندگان
چکیده
The traditional technique for simulating physical systems modeled by partial differential equations is by means of time-stepping methodology where the state of the system is updated at regular discrete time intervals. This method has inherent inefficiencies. In contrast to this methodology, we have developed a new asynchronous type of simulation based on a discrete-event-driven (as opposed to time-driven) approach, where the simulation state is updated on a "need-to-be-done-only" basis. Here we report on this new technique, show an example of particle acceleration in a fast magnetosonic shockwave, and briefly discuss additional issues that we are addressing concerning algorithm development and parallel execution.
منابع مشابه
Electron Acceleration at a Low-mach-number Perpendicular Collisionless Shock
A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (MA = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low-Mach-number perpendicular shocks. In this paper, the effect o...
متن کاملFull particle simulation of a perpendicular collisionless shock: A shock-rest-frame model
Full kinetic dynamics of a perpendicular collisionless shock is studied by means of a one-dimensional electromagnetic full particle simulation. The present simulation domain is taken in the shock rest frame in contrast to the previous full particle simulations of shocks. Preliminary results show that the downstream state falls into a unique cyclic reformation state for a given set of upstream p...
متن کاملExperimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston
Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate t...
متن کاملRELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD
A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...
متن کاملVery high Mach-number electrostatic shocks in collisionless plasmas.
The kinetic theory of collisionless electrostatic shocks resulting from the collision of plasma slabs with different temperatures and densities is presented. The theoretical results are confirmed by self-consistent particle-in-cell simulations, revealing the formation and stable propagation of electrostatic shocks with very high Mach numbers (M>>10), well above the predictions of the classical ...
متن کامل